翻訳と辞書
Words near each other
・ Beverly, Washington
・ Beverly, West Virginia
・ Beverly-Begg Observatory
・ Beverly/Morgan Railroad District
・ Beverlye Hyman Fead
・ Beverlyville, Virginia
・ Beverlywood, Los Angeles
・ Bevern
・ Bevern (Samtgemeinde)
・ Bevern, Lower Saxony
・ Bevern, Schleswig-Holstein
・ Beverstedt
・ Beverstedt (Samtgemeinde)
・ Beverston
・ Beverston Castle
Beverton–Holt model
・ Beverungen
・ Beverwaard
・ Beverwijck
・ Beverwijk
・ Beverwijk Bazaar
・ Beverwijk railway station
・ Beverwyck Brewery
・ Beverwyck Manor
・ Beverīna Municipality
・ Beves of Hamtoun (poem)
・ Beveuge
・ Bevier
・ Bevier and Southern Railroad
・ Bevier House


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Beverton–Holt model : ウィキペディア英語版
Beverton–Holt model
The Beverton–Holt model is a classic discrete-time population model which gives the expected number ''n'' ''t''+1 (or density) of individuals in generation ''t'' + 1 as a function of the number of individuals in the previous generation,
: n_ = \frac.
Here ''R''0 is interpreted as the proliferation rate per generation and ''K'' = (''R''0 − 1) ''M'' is the carrying capacity of the environment. The Beverton–Holt model was introduced in the context of fisheries by Beverton & Holt (1957). Subsequent work has derived the model under other assumptions such as contest competition (Brännström & Sumpter 2005) or within-year resource limited competition (Geritz & Kisdi 2004). The Beverton–Holt model can be generalized to include scramble competition (see the Ricker model, the Hassell model and the Maynard Smith–Slatkin model). It is also possible to include a parameter reflecting the spatial clustering of individuals (see Brännström & Sumpter 2005).
Despite being nonlinear, the model can be solved explicitly, since it is in fact an inhomogeneous linear equation in 1/''n''.
The solution is
:
n_t = \frac = rN \left( 1 - \frac \right),
and its solution is
:
N(t) = \frac{N(0) + (K - N(0)) e^{-rt}}.

==References==

*
*
*
*
Category:Biostatistics
Category:Fisheries science
Category:Stochastic processes

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Beverton–Holt model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.